If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+10n=0
a = 8; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·8·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*8}=\frac{-20}{16} =-1+1/4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*8}=\frac{0}{16} =0 $
| -4(1-2n)=-2+8n | | 8n=-3=1 | | -467=-3-4(13x-14) | | y/2+16=44 | | 7x-8=10x-1 | | 7(4p-4)=35+7p | | 3n+70=50+2n | | 25=y/4+13 | | 10+2a=5a-8a | | 3(x-2)-7x=4x+4 | | 12^(x+1)=20^2 | | 1+6p=13+4p | | 7(1-7a)+3=-2a-37 | | 9x+2=10x. | | 13+6u+8+19=u | | 3x=48-7 | | 1+5a=5+6a | | 6x+8=5x+-4 | | 5-2m-m=-4 | | 2x+2/2x=20 | | 0.75n-0.5=0.66n | | 2x+2/2x=20x+4/2x+2 | | (7x-5)°=0 | | 7x-2/3=1/2 | | 6t=25 | | 20+.3n=59.60 | | 3x-9=2+9 | | 4y+3/2=2/5 | | 5x-6=2x=9 | | 5v-4+4v=-13 | | (15x+3)=0 | | 5t+6+3t-7t=1+3 |